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Algorithms for Brownian dynamics simulation
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Several Brownian dynamics numerical schemes for treating one-variable stochastic differential equations at
the position of the Langevin level are analyzed from the point of view of their algorithmic efficiency. The
algorithms are tested using a one-dimensional biharmonic Langevin oscillator process. Limitations in the
conventional Brownian dynamics algorithm are shown and it is demonstrated that much better accuracy for
dynamical quantities can be achieved with an algorithm based on the stochastic expansion~SE!, which is
superior to the stochastic second-order Runge-Kutta algorithm. For static properties the relative accuracies of
the SE and Runge-Kutta algorithms depend on the property calculated.@S1063-651X~98!05708-0#

PACS number~s!: 02.70.Ns, 02.50.Ey, 02.60.Cb, 05.20.2y
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I. INTRODUCTION

An increasing number of problems in dispersed phase
tems such as polymer solutions, colloidal liquids, and th
mixtures are being modeled by computer simulation. In s
systems the influence of the large number of solvent m
ecules on the polymer or colloidal particles is treated b
combination of random forces and frictional terms. In effe
the dispersed systems are described not by Newton’s e
tions of motion but by a form of Langevin equation. Com
pared to the well-established molecular dynamics~MD! tech-
nique for solving Newton’s equations, the stochas
dynamics~SD! algorithms for solving the Langevin equa
tions are considerably less well developed because of t
stochastic nature. The most simple form of SD, devised
Ermak, is called Brownian dynamics~BD!, in which the sto-
chastic force contains no correlations in space or time
the equations are solved with a low-order algorithm@1#. This
algorithm is still widely used for BD simulations and ha
been applied to a variety of problems; see, for example,@2–
5#.

One of the main problems with this technique is that ve
small time steps are required; otherwise drifts in calcula
quantities with increasing time step can occur even tho
the numerical procedure appears to be stable.~In this respect,
it differs from MD where noticeable systematic drift in ca
culated properties and algorithm instability are clos
linked.! Of course, eventually at a large enough time s
even the Ermak BD algorithm becomes unstable. These
vious drawbacks follow from the fact that the BD method
at the level of the first-order Euler method for ordinary d
ferential equations, which is well known to be a simple a
straightforward but rather inaccurate procedure.

One possible way to improve the efficiency of the B
method~as measured by the magnitude of the time step
can be used with tolerable drift! is to search for an appropri
ate second- or higher-order algorithm. This worthy ambiti
however, is not so simple to achieve in practice; only a f
proposals have appeared in the literature and none of t
can be considered to be fully satisfactory. Most of them
PRE 581063-651X/98/58~2!/2611~5!/$15.00
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based on extending deterministic Runge-Kutta algorithms
include stochastic terms. Algorithms along this line ha
been proposed, e.g., by Helfand@6# and Iniesta and Garcia d
la Torre@7#, and recently one has been rigorously develop
for the one-variable case by Honeycutt@8#. These methods
require more than one evaluation of the particle force
time step, which clearly reduces its efficiency, but this can
compensated for by being able to employ larger time ste
typically several times larger than with BD. It has been
gued, however, that such a method offers some advant
over conventional BD method, e.g., it gives more accur
results for the same amount of computer time@7#. The
method has been applied to several macromolecular dis
sions, including a DNA chain@9# and suspensions of charge
rodlike colloidal particles@10#.

van Gunsteren and Berendsen proposed a Verlet-type
chastic algorithm that is versatile enough to allow the perf
mance of simulations covering a broad range of the frict
coefficients@11#. It needs only one evaluation of the forc
per time step and reduces to a simple algorithmic form in
large friction coefficient limit. This algorithm has been us
to model, for example, polymer dynamics in solution@12#.

In the present note we shall consider, from the point
view of BD algorithms, the iterative solution of stochast
differential equations developed by Honeycutt@8#. On the
basis of this one-variable solution mutual relations betwe
different BD algorithms can be analyzed for the simple
case of one-dimensional Brownian motion in a potential
the diffusion limit. Such a simple model case should be c
sidered before going to a multivariable case because s
exact results are available for it, which facilitates verificati
and more rigorous comparisons between the different a
rithms.

The basic BD algorithms are considered in Sec. II. In S
III a simple numerical test is discussed. Conclusions are
Sec. IV.

II. ALGORITHMS

The evolution of the position of a Brownian particle in
potential fieldU is described by the stochastic differenti
equation@13#
2611 © 1998 The American Physical Society
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dx

dt
5bDF1D1/2j, ~1!

which corresponds to the equation for the probability dis
bution functionP(x,t),

]P

]t
5D

]

]x S ]P

]x
2bFPD . ~2!

Hereb51/kBT, wherekB is Boltzmann’s constant,T is the
temperature,F52dU/dx is the force acting on the particle
D is the diffusion constant, andj is the Gaussian white nois
process. The above equations are a one-variable versio
the position Langevin and the Smoluchowski equati
which form the basis for the Brownian dynamics meth
~without many-body hydrodynamic interactions!.

The stationary solution of the Smoluchowski equation
the Boltzmann distribution

P~x,`!5const3e2bU. ~3!

From the Smoluchowski equation the explicit results for
mean square displacement of a particle position can be
culated up to fourth order in time@14#,

^Dx2&52Dt1
D2

T
^F8&t21

D3

3T2 ^F82&t3

2
D4

12T3 @T^F92&2^F83&#t4. ~4!

Here and in the followingT meanskBT, F85dF/dx, and
F95d2F/dx2. Some algorithms proposed for solving E
~1!, which we will consider, have the following form. Th
conventional Brownian dynamics~CBD! algorithm

x~Dt !5x01
D

T
FDt1G0 , ~5!

the van Gunsteren–Berendsen~GB! algorithm

x~Dt !5x01
D

2T
~2F1ḞDt !Dt1G0 , ~6!

and the second-order stochastic Runge-Kutta~SRK! algo-
rithm

x~Dt !5x01
D

2T
~F11F2!Dt1G0 , ~7!

where F15F(x0) and F25F@x01(D/T)FDt1G0#. The
time derivative of the force in the GB algorithm is conve
tionally approximated byḞ5@F(t)2F(t2Dt)#/Dt and G0
in the above equations is a random number sampled fro
Gaussian distribution with zero mean and width^G0

2&
52DDt.

For a general stochastic differential equation such as
~1! the following expansion forx(Dt) occurs@8#:

x~Dt !5x01
D

T
FDt1

D2

2T2 FF8Dt21G01
D

T
F8G1
-

of
,

s

e
al-

a

q.

1
D

2T
F9G, ~8!

where terms of an order higher thanDt2 are omitted and

G15E
0

Dt

G0ds, ~9!

G5E
0

Dt

G0
2ds ~10!

are random numbers. The expansion of Eq.~8! results from
an integration of Eq.~1!, the Taylor expansion forF, and its
repeated insertion into itself@8#. It is important to recognize
that the random numberG1 is also, likeG0 , a Gaussian ran-
dom number with the properties

^G1&50, ^G1
2&5 2

3 DDt3, ^G1G0&5DDt2. ~11!

Thus the term in Eq.~8! involving G1 is of orderDt3/2. The
last term is of orderDt2, but its nonlinearity does not allow
us to obtain a more explicit representation. In the followi
the algorithm based on the expansion of Eq.~8! will be
called the stochastic expansion~SE! algorithm.

An important quantity enabling us to differentiate b
tween the various algorithms is the mean-square displa
ment in a time step~MSD1!. Its exact form follows from Eq.
~4!. The CBD algorithm gives only the trivial linear approx
mation

^Dx2&52DDt1
D2

T
^F8&Dt21dCBDDt2 ~12!

and the error in the second order term is

dCBD5
D2

T F1

T
^F2&2^F8&G . ~13!

For many physical realizations the second derivative of
interaction potential is predominantly positive, which impli
dCBD.0. Thus the CBD algorithm generally overestimat
the MSD1.

The GB algorithm also yields an error in the second-or
term,

^Dx2&52DDt1
D2

T
^F8&Dt21dGBDt2, ~14!

where

dGB5dCBD1
3

2
^F2&S 12

^F~Dt !F~0!&

^F2& D . ~15!

As the normalized autocorrelation function is less than un
the second contribution in thedGB is alwayspositive. This
means, rather surprisingly, that in general the GB algorit
yields larger errors than the CBD algorithm.

The SRK algorithm gives

^Dx2&52DDt1
D2

T
^F8&Dt22dSRKDt2, ~16!
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with an error contribution

dSRK5
D3

2T3 ~^F1
2&2^F1F2&!, ~17!

which is always positive and for smallDt can be approxi-
mated by^F8F2&Dt/2. Thus the SRK algorithm gives th
correct second-order term for MSD1 and yields an unde
timation of MSD1 with leading orderDt3.

Equation ~8! yields the following expression for th
MSD1:

^Dx2&52DDt1
D2

T
^F8&Dt21

D2

T F1

T
^F2&1^F8&GDt2

1
D3

T2 F1

T
^F8F2&1

1

2
^F9F&1

2

3
^F82&GDt3.

~18!

For many physical interactions~e.g., U;x2n) the second
term of orderDt2 is equal to zero and the expansion of E
~8!, like the SRK algorithm, gives the correct MSD1 wi
some deviation in terms of orderDt3.

III. NUMERICAL CALCULATIONS

In order to compare the efficiency of the above algorith
with increasingDt and to establish how the MSD1 erro
influence the static and dynamic quantities we have con
ered the dynamics of a Brownian particle in an external
tential U5kx4/4, a potential for whichF9Þ0 and the sta-
tionary solution exists. In the calculationsk51, T51, and
D51 were used and the averages were calculated f
simulations of about 53108 time steps. In the SE algorithm
based on Eq.~8! the G term was approximated by12 DtG0

2

and the two correlated random numbersG0 and G1 were
sampled from a bivariate Gaussian distribution.

Perhaps the most important yet simplest dynamical qu
tity is the one we shall consider: the time-dependent m
square displacement. In many-particle systems the MSD
the long-time limit gives the self-diffusion coefficient of th
particle. The general behavior of the MSD calculated w
the various algorithms is shown in Fig. 1 for a large time s
Dt50.05 ~for other time steps the results are qualitative
very similar!. On the scale of the figure the MSD curve
obtained from SRK and SE calculations coincide with t
exact curve~i.e., the curve produced by all algorithms in th
limit of very small time step!. The CBD curve very slowly
approaches from above the exact curve. Also the GB cu
deviates considerably from the exact curve at short times
converges relatively quickly at longer times~in about
10– 15Dt) to the correct form. Notice that, in accordan
with Eq. ~15!, it starts above the CBD curve. Therefore,
algorithms reproduce correctly the long-time behavior of
MSD, but differ considerably in their ability to reproduce i
intermediate- and particularly short-time behavior. This
clearly seen in the enlargement in Figs. 1 and 2. In the in
a slight difference between the SRK and SE algorith
emerges. The SRK algorithm preserves the initial sm
MSD1 deviation for a long time. The SE method, in contra
converges quickly to the exact curve. Figure 2 illustrate
s-
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significant influence of the MSD1 on the short-time behav
of the MSD. ForDt50.01 the CBD was still not able to
reproduce the true MSD and the GB needs more than 1Dt
to reach the exact curve. Instead the SRK and SE algorit
produce results that follow the correct curve very well. F
Dt.0.02 the third-order corrections start to play an impo
tant role and all the MSD1 start to differ. As a consequen
the SE and SRK curves deviate from the exact curve
should be placed in perspective, however, that these de
tions are always more than ten times smaller than those f
the CBD scheme at the same size of the time step. There
the SRK and SE algorithms are considerable improveme
on the CBD algorithm.

Static properties are determined fully by the static pro
ability distribution. The extent to which the static distributio
function calculated by the various algorithms differs fro
the exact form given by Eq.~3! is shown in Fig. 3. The
results are shown for one value ofDt, but the situation for
other values is qualitatively very similar. It appears from t

FIG. 1. Mean square displacement of a biharmonic Lange
oscillator obtained from the four BD algorithms discussed in
text with time stepDt50.05. The curve labeled ‘‘exact’’ is the limi
obtained from calculations withDt50.001. The inset presents a
enlargement of the short- and intermediate-time regions.

FIG. 2. Short-time region of the MSD from different algorithm
and three different sizes of the time step in decreasing magnitud
deviation: 0.05, 0.03, and 0.01. The SE and SRK algorithm data
Dt50.01 coincide with the exact curve.
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figure that the best approximation, at a given value ofDt, is
achieved by the SRK method and the worst~as expected! is
by the CBD route. The distributions produced by the GB a
SE schemes, apart from having the opposite sign, are
similar. This suggests that the accuracy of the static qua
ties calculated by these methods would also be quite sim
This is, to a certain extent, what we see in Figs. 4~a! and
4~b!, where examples for two basic static quantities are p
sented, the energy and its variance, respectively. For

FIG. 3. Deviations of the calculated static probability distrib
tion from its exact form@given by Eq.~3!# for various BD algo-
rithms ~the data are forDt50.03).

FIG. 4. ~a! Energy and~b! its variance of the biharmonic Lange
vin oscillator vs the time step from the different algorithms.
d
ry
ti-
r.

-
is

potential field both properties are related to the fourth a
eighth moments ofP(x). Notice that, despite a good estim
tion of P(x), the SRK approach yields a considerably le
accurate energy and only a slightly better estimate for
energy variance when compared with the SE method.
advantage of the SE algorithm in estimating the energy
lows from mutual cancellations of theP(x) oscillations in
evaluating the lower moments. For higher moments the c
cellation is not so good and the best estimation comes n
~marginally! from the SRK method@see Fig. 4~b!#.

IV. CONCLUSIONS

In the work we have considered algorithms for solving t
stochastic differential equation of the position Langev
equation in its one-variable version. In particular, propert
of the biharmonic Langevin oscillator were analyzed in d
tail from the point of view of algorithmic efficiency at dif
ferent time steps.

As expected, the original 1975 first-order Brownian d
namics algorithm~CBD! due to Ermak is fairly stable bu
yields the worst estimate of the calculated quantities for a
Dt. It generates with increasingDt a significant overestima
tion of both static and dynamic quantities. The GB algorith
gives the largest deviation for the mean square displacem
in a time step~MSD1! and, as for the CBD method, is no
able to reproduce correctly the short-time region of the m
square displacement. Thus both of these algorithms sh
be used with caution when accurate results for dynam
quantities at short and intermediate times are required.
GB algorithm, however, yields a much better estimation
static quantities than the CBD algorithm. Such behavior f
lows probably from the fact that although the GB algorith
is higher order than the CBD algorithm it is not a tru
second-order algorithm as the deterministic part is of or
Dt2 and the stochastic part involves only a term at theDt1/2

level.
The two other position-update schemes considered,

stochastic Runge-Kutta algorithm and the stochastic equa
based on Eq.~8! in the text, instead are true second-ord
algorithms. Both give the correct form for the MSD1 and t
best estimation for the mean square displacements. The
approach gives also the best estimation for the energy an
comparable to the SRK estimate for the energy variance.
form of the error of the MSD1 and its systematic influen
on the calculated quantities implies that efficiency of
studied algorithms decreases as the interaction potentia
comes less soft. The basis of the present paper relies on
colloid-colloid part of the potential being differentiable.~Al-
gorithms for treating discontinuous potentials are less w
developed and require quite different procedures@15,16#.
There are serious problems with hard-core discontinuous
tentials when short-range fluid lubrication hydrodynam
are included@17,18#.!

The SE algorithm gave similar accuracy to that of t
CBD algorithm with a time step some 5–10 times larg
Despite some extra computational requirements neede
calculate force derivatives and correlated random num
the resulting performance of the SE is more than three tim
more efficient than the CBD algorithm. Data from this stu
and preliminary results on many variable systems~e.g., 120
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particles in two dimensions! indicate that the SRK and SE
algorithms would appear to have more or less the same c
putational requirements per step.

The differences between the SE and SRK algorith
come from the fact that the SRK algorithm is an approxim
tion of Eq. ~8! in which all of the random terms are repr
sented by a single random number term. Our results sug
that a more rigorous implementation of this expansion
general gives improvements in the accuracy of the calcula
quantities. It should be also noticed that the SE method
quires only one evaluation of the force loop per time st
which is an advantage when compared to the SRK appro
particularly for larger many-particle systems. A disadvanta
of the SE method is that higher-order derivatives of the
teraction potential are involved in the calculation and eva
m-

s
-

est
n
d

e-
,
h,
e
-
-

ation of correlated random numbers is necessary. Also
extension of the SE approach to deal with positio
dependent diffusion coefficients seems to be rather diffic
as the stochastic part of the expansion becomes prohibiti
more complicated. Work on a many-particle version of t
SE scheme is in progress and the results of preliminary
culations support most of the conclusions obtained for
one-variable case described here.
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