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Algorithms for Brownian dynamics simulation
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Several Brownian dynamics numerical schemes for treating one-variable stochastic differential equations at
the position of the Langevin level are analyzed from the point of view of their algorithmic efficiency. The
algorithms are tested using a one-dimensional biharmonic Langevin oscillator process. Limitations in the
conventional Brownian dynamics algorithm are shown and it is demonstrated that much better accuracy for
dynamical quantities can be achieved with an algorithm based on the stochastic exg&fsjomhich is
superior to the stochastic second-order Runge-Kutta algorithm. For static properties the relative accuracies of
the SE and Runge-Kutta algorithms depend on the property calcul&#&063-651X98)05708-0

PACS numbgs): 02.70.Ns, 02.50.Ey, 02.60.Cb, 05.29.

[. INTRODUCTION based on extending deterministic Runge-Kutta algorithms to
include stochastic terms. Algorithms along this line have
An increasing number of problems in dispersed phase sysxeen proposed, e.g., by Helfajft] and Iniesta and Garcia de
tems such as polymer solutions, colloidal liquids, and theif@ Torre[7], and recently one has been rigorously developed
mixtures are being modeled by computer simulation. In suctor the one-variable case by Hpneyc[ﬁﬂ. Thes_e methods
systems the influence of the large number of solvent molf€duire more than one evaluation of the particle force per

ecules on the polymer or colloidal particles is treated by time step, which clearly reduces its efficiency, but this can be

D - a(:ompensated for by being able to employ larger time steps,
combination of random forces and frictional terms. In effect, pically several times larger than with BD. It has been ar-

the dispersed systems are described not by Newton’s equgjeq, however, that such a method offers some advantages
tions of motion but by a form of Langevin equation. Com- oyer conventional BD method, e.g., it gives more accurate
pared to the well-established molecular dynani®) tech- esults for the same amount of computer tifild. The
nique for solving Newton's equations, the stochasticmethod has been applied to several macromolecular disper-
dynamics(SD) algorithms for solving the Langevin equa- sjons, including a DNA chaif@] and suspensions of charged
tions are considerably less well developed because of thejpdlike colloidal particleg10].

stochastic nature. The most simple form of SD, devised by van Gunsteren and Berendsen proposed a Verlet-type sto-
Ermak, is called Brownian dynami¢BD), in which the sto-  chastic algorithm that is versatile enough to allow the perfor-
chastic force contains no correlations in space or time anthance of simulations covering a broad range of the friction
the equations are solved with a low-order algoritfith This  coefficients[11]. It needs only one evaluation of the force
algorithm is still widely used for BD simulations and has per time step and reduces to a simple algorithmic form in the
been applied to a variety of problems; see, for exanjle, large friction coefficient limit. This algorithm has been used
5]. to model, for example, polymer dynamics in solutidr2].

One of the main problems with this technique is that very In the present note we shall consider, from the point of
small time steps are required; otherwise drifts in calculate¢ti€W of BD algorithms, the iterative solution of stochastic
quantities with increasing time step can occur even thougfifferential equations developed by Honeyclg{. On the
the numerical procedure appears to be stabiehis respect, b.aSIS of this one—v_arlable solution mutual relations petween
it differs from MD where noticeable systematic drift in cal- different BD algorithms can be analyzed for the simplest

culated properties and algorithm instability are closelycase of one-dimensional Brownian motion in a potential in

linked) Of course, eventually at a large enough time stepthe diffusion limit. Such a simple model case should be con-

even the Ermak BD algorithm becomes unstable. These obc,_idered before going to a mu]tivari_able case becag;e some
vious drawbacks follow from the fact that the BD method iSexact results are available for it, which facilitates verification
at the level of the first-order Euler method for ordinary dif- and more rigorous comparisons between the different algo-

. : S : ithms.
ferential equations, which is well known to be a simple and" . . . .
straightfor\(/]vard but rather inaccurate procedure P The basic BD algorithms are considered in Sec. Il. In Sec.

One possible way to improve the efficiency of the BD IIl a simple numerical test is discussed. Conclusions are in
method(as measured by the magnitude of the time step tha%‘ec' V.
can be used with tolerable dijifis to search for an appropri-
ate second- or higher-order algorithm. This worthy ambition,
however, is not so simple to achieve in practice; only a few The evolution of the position of a Brownian particle in a
proposals have appeared in the literature and none of thepotential fieldU is described by the stochastic differential

can be considered to be fully satisfactory. Most of them areequation[13]

Il. ALGORITHMS
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dx 12 D "
5o =BDF+DY%, (1) +57 F'G, ®

which corresponds to the equation for the probability distri-where terms of an order higher than? are omitted and
bution functionP(x,t),

At
PP , F1=JO Tods, ©
0P x|\ ax PFP/- 2
At
Here 8= 1/kgT, wherekg is Boltzmann’s constanf is the G= fo I5ds (10

temperaturel-=—dU/dx is the force acting on the particle,
process. The above equations are a one-variable version gf, integration of Eq(1), the Taylor expansion fd, and its

the position Langevin and the Smoluchowski equationyepeated insertion into itsel8]. It is important to recognize
which form the basis for the Brownian dynamics methodinat the random numbdi, is also, likel'y, a Gaussian ran-

(without many-body hydrodynamic interactions dom number with the properties
The stationary solution of the Smoluchowski equation is
the Boltzmann distribution (T1)=0, (1“%): 2 DAL, <F1F0>=DAt2. (11)
P(x,)=constx e AY. 3

Thus the term in Eq(8) involving T'; is of orderAt®? The

. . - last term is of order\t?, but its nonlinearity does not allow
From the Smoluchowski equation the explicit results for the ; L : .
s to obtain a more explicit representation. In the following

mean square displacement of a particle position can be ¢ I8 . ; .
culated up to fourth order in timg4], he algorithm based on the expansion of E). will be

called the stochastic expansi@BE) algorithm.

2 3 An important quantity enabling us to differentiate be-
(Ax?)=2Dt+ - (F")t2+ 37 (F'2)¢3 tween the various algorithms is the mean-square displace-
ment in a time stepMSDJ). Its exact form follows from Eq.
D4 (4). The CBD algorithm gives only the trivial linear approxi-
- 1573 [T(F"2)—(F"3)]t% (4  mation
2
Here and in the followindgl meanskgT, F'=dF/dx, and (Ax?)=2DAt+ D? (F"YAt?+ ScgpAt? (12

"=d?F/dx?. Some algorithms proposed for solving Eq.
(), Wh|(_:h we will c_on&der, hz_;\ve the foIIov_vmg form. The and the error in the second order term is
conventional Brownian dynamid€BD) algorithm

2

D _b*
X(At)=xo+ = FAU+T, (5) dcep="7 : (13

1
7 (F)~(F)

For many physical realizations the second derivative of the
interaction potential is predominantly positive, which implies
6cep>0. Thus the CBD algorithm generally overestimates

the van Gunsteren—BerendsgpB) algorithm

D :
X(At)=Xo+ == (2F+FAt)At+T, (6)  the MSDL.
2T The GB algorithm also yields an error in the second-order
term,
and the second-order stochastic Runge-KU8&K) algo-
rithm D2
(AX?)=2DAt+ £3 (F"YAt?+ 5ggAt?, (14)
D
X(At)=Xg+ == (F{+F,)At+1I,, 7
( ) 0 2-|—( 1 2) 0 ( ) where

where F1=F(xy) and F,=F[xo+(D/T)FAt+Ty]. The 3 (F(At)F(0))

time derivative of the force in the GB algorithm is conven- de8= dcept 5 (FAH|1- ) (15
tionally approximated byr=[F(t) —F(t—At)]J/At and Ty

in the above equations is a random number sampled from As the normalized autocorrelation function is less than unity,
Gaussian distribution with zero mean and wid{l';)  the second contribution in thégg is always positive. This

=2DAt. means, rather surprisingly, that in general the GB algorithm
For a general stochastic differential equation such as Egyields larger errors than the CBD algorithm.
(1) the following expansion for(At) occurs[8]: The SRK algorithm gives

DZ 2

D D
X(A)=xo+ = FAt+ 50 |:|:'At2+ro+T F'T, <Ax2):2DAt+?(F’)Atz—ésRKAtz, (16)
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with an error contribution

D3
dsr=573 ((FD) —(F1F2)), (17

which is always positive and for smallt can be approxi-
mated by(F'F2)At/2. Thus the SRK algorithm gives the
correct second-order term for MSD1 and yields an underes-
timation of MSD1 with leading ordeAt3.

Equation (8) yields the following expression for the
MSD1:

<Ax?> /2Dt

2 p? . ., D’[1 _, NN
(AX >=2DAt+?<F YAt + ?(F Y+ (F')|At
D3[1 1 2
tyzT (F'F?)+ 5 (F"F)+ 3 <F'2>}At3- FIG. 1. Mean square displacement of a biharmonic Langevin

oscillator obtained from the four BD algorithms discussed in the
(18)  textwith time stepAt=0.05. The curve labeled “exact” is the limit
obtained from calculations witAt=0.001. The inset presents an

. . . 2
For many physical interactione.g., U~x"") the second enlargement of the short- and intermediate-time regions.

term of orderAt? is equal to zero and the expansion of Eq.
(8), like the SRK algorithm, gives the correct MSD1 with

some deviation in terms of ordert3. significant influence of the MSD1 on the short-time behavior

of the MSD. ForAt=0.01 the CBD was still not able to
reproduce the true MSD and the GB needs more thaxt 10

to reach the exact curve. Instead the SRK and SE algorithms
é)roduce results that follow the correct curve very well. For
At>0.02 the third-order corrections start to play an impor-
ant role and all the MSD1 start to differ. As a consequence,
the SE and SRK curves deviate from the exact curve. It
should be placed in perspective, however, that these devia-
) X . . tions are always more than ten times smaller than those from
tionary solution exists. In the calculatiohs=1, T=1, and the CBD sche%e at the same size of the time step. Therefore,

D.Zl were used and the_averages were calculate_d fror{he SRK and SE algorithms are considerable improvements
simulations of about & 10° time steps. In the SE algorithm on the CBD algorithm

[ll. NUMERICAL CALCULATIONS

In order to compare the efficiency of the above algorithm
with increasingAt and to establish how the MSD1 errors
influence the static and dynamic quantities we have consi
ered the dynamics of a Brownian particle in an external po
tential U=kx*/4, a potential for whichF”#0 and the sta-

H 2
based on Eq(8) the G term was approximated byAtI'g Static properties are determined fully by the static prob-
and the two correlated random numbdfg and I’y were  gpility distribution. The extent to which the static distribution
sampled from a bivariate Gaussian distribution. function calculated by the various algorithms differs from

_ P_erhaps the most importar_1t yet simplest dynamical quanpne exact form given by Eq(3) is shown in Fig. 3. The
tity is the one we shall consider: the time-dependent meagygits are shown for one value at, but the situation for

square displacement. In many-particle systems the MSD igiher values is qualitatively very similar. It appears from the
the long-time limit gives the self-diffusion coefficient of the

particle. The general behavior of the MSD calculated with
the various algorithms is shown in Fig. 1 for a large time step 1
At=0.05 (for other time steps the results are qualitatively 1.07
very similap. On the scale of the figure the MSD curves
obtained from SRK and SE calculations coincide with the
exact curve(i.e., the curve produced by all algorithms in the
limit of very small time step The CBD curve very slowly
approaches from above the exact curve. Also the GB curve %
deviates considerably from the exact curve at short times but ¥
converges relatively quickly at longer time@n about 0.93 1
10-15\t) to the correct form. Notice that, in accordance ]
with Eqg. (15), it starts above the CBD curve. Therefore, all
algorithms reproduce correctly the long-time behavior of the

MSD, but differ considerably in their ability to reproduce its 0-3% o0 gy PP s
intermediate- and particularly short-time behavior. This is ’ ) TIME t ’ )

clearly seen in the enlargement in Figs. 1 and 2. In the inset

a slight difference between the SRK and SE algorithms FIG. 2. Short-time region of the MSD from different algorithms
emerges. The SRK algorithm preserves the initial smallnd three different sizes of the time step in decreasing magnitude of
MSD1 deviation for a long time. The SE method, in contrast,deviation: 0.05, 0.03, and 0.01. The SE and SRK algorithm data for
converges quickly to the exact curve. Figure 2 illustrates a\t=0.01 coincide with the exact curve.
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potential field both properties are related to the fourth and
eighth moments oP(x). Notice that, despite a good estima-
tion of P(x), the SRK approach yields a considerably less
accurate energy and only a slightly better estimate for the
energy variance when compared with the SE method. The
advantage of the SE algorithm in estimating the energy fol-
lows from mutual cancellations of th(x) oscillations in
evaluating the lower moments. For higher moments the can-
cellation is not so good and the best estimation comes now
(marginally from the SRK methodsee Fig. 4b)].

IV. CONCLUSIONS

In the work we have considered algorithms for solving the
stochastic differential equation of the position Langevin

FIG. 3. Deviations of the calculated static probability distribu- equation in its one-variable version. In particular, properties

tion from its exact form{given by Eq.(3)] for various BD algo-

rithms (the data are foAt=0.03).

figure that the best approximation, at a given valuetfis
achieved by the SRK method and the wqes expectedis

of the biharmonic Langevin oscillator were analyzed in de-
tail from the point of view of algorithmic efficiency at dif-
ferent time steps.

As expected, the original 1975 first-order Brownian dy-
namics algorithm(CBD) due to Ermak is fairly stable but

by the CBD route. The distributions produced by the GB andyields the worst estimate of the calculated quantities for any
SE schemes, apart from having the opposite sign, are verit. It generates with increasiniyt a significant overestima-
similar. This suggests that the accuracy of the static quantition of both static and dynamic quantities. The GB algorithm
ties calculated by these methods would also be quite similagives the largest deviation for the mean square displacement

This is, to a certain extent, what we see in Fig&) 4and

in a time step(MSD1) and, as for the CBD method, is not

4(b), where examples for two basic static quantities are preable to reproduce correctly the short-time region of the mean
sented, the energy and its variance, respectively. For thisquare displacement. Thus both of these algorithms should
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FIG. 4. (a) Energy andb) its variance of the biharmonic Lange-
vin oscillator vs the time step from the different algorithms.

TIME STEP

be used with caution when accurate results for dynamical
gquantities at short and intermediate times are required. The
GB algorithm, however, yields a much better estimation of
static quantities than the CBD algorithm. Such behavior fol-
lows probably from the fact that although the GB algorithm
is higher order than the CBD algorithm it is not a true
second-order algorithm as the deterministic part is of order
At? and the stochastic part involves only a term at Até&?
level.

The two other position-update schemes considered, the
stochastic Runge-Kutta algorithm and the stochastic equation
based on Eq(8) in the text, instead are true second-order
algorithms. Both give the correct form for the MSD1 and the
best estimation for the mean square displacements. The SE
approach gives also the best estimation for the energy and is
comparable to the SRK estimate for the energy variance. The
form of the error of the MSD1 and its systematic influence
on the calculated quantities implies that efficiency of all
studied algorithms decreases as the interaction potential be-
comes less soft. The basis of the present paper relies on the
colloid-colloid part of the potential being differentiablél-
gorithms for treating discontinuous potentials are less well
developed and require quite different proceduf#s,16.
There are serious problems with hard-core discontinuous po-
tentials when short-range fluid lubrication hydrodynamics
are included17,18.)

The SE algorithm gave similar accuracy to that of the
CBD algorithm with a time step some 5-10 times larger.
Despite some extra computational requirements needed to
calculate force derivatives and correlated random number,
the resulting performance of the SE is more than three times
more efficient than the CBD algorithm. Data from this study
and preliminary results on many variable systeimg., 120
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particles in two dimensionsndicate that the SRK and SE ation of correlated random numbers is necessary. Also an
algorithms would appear to have more or less the same conextension of the SE approach to deal with position-
putational requirements per step. dependent diffusion coefficients seems to be rather difficult
The differences between the SE and SRK algorithmss the stochastic part of the expansion becomes prohibitively
come from the fact that the SRK algorithm is an approxima-more complicated. Work on a many-particle version of the
tion of Eq. (8) in which all of the random terms are repre- SE scheme is in progress and the results of preliminary cal-
sented by a single random number term. Our results suggestilations support most of the conclusions obtained for the
that a more rigorous implementation of this expansion inone-variable case described here.
general gives improvements in the accuracy of the calculated
guantities. It should be also noticed that the SE method re-
quires only one evaluation of the force loop per time step,
which is an advantage when compared to the SRK approach, The work was supported by the Polish Committee for
particularly for larger many-particle systems. A disadvantageScientific ResearcHKBN) under Grant No. 8T11F 010
of the SE method is that higher-order derivatives of the in-08p04. Some of the calculations were performed at the
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